منابع مشابه
Commuting $pi$-regular rings
R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.
متن کاملOn Regular Group Rings
Let G be a multiplicative group, K a commutative ring with unit, and K(G) the group ring of G with respect to K. We say that K(G) is regular if given an x in K(G), there is a y in K(G) such that xyx = x. Using a homological characterization of regular rings which was found independently by M. Harada [2, Theorem 5] and the author, we prove that if G is locally finite, then K(G) is regular if and...
متن کاملOn n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملQuasi-Duo Rings and Stable Range Descent
In a recent paper, the first author introduced a general theory of corner rings in noncommutative rings that generalized the classical theory of Peirce decompositions. This theory is applied here to the study of the stable range of rings upon descent to corner rings. A ring is called quasi-duo if every maximal 1-sided ideal is 2-sided. Various new characterizations are obtained for such rings. ...
متن کاملOn Semiabelian π-Regular Rings
A ring R is defined to be semiabelian if every idempotent of R is either right semicentral or left semicentral. It is proved that the set N(R) of nilpotent elements in a π-regular ring R is an ideal of R if and only if R/J(R) is abelian, where J(R) is the Jacobson radical of R. It follows that a semiabelian ring R is π-regular if and only if N(R) is an ideal of R and R/N(R) is regular, which ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1969
ISSN: 0386-2194
DOI: 10.3792/pja/1195520839